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Algorithm for multiple minima search
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We discuss and illustrate a new stochastic algorithm to find the greatest number of minima for a given cost
function in aN-dimensional space. This algorithm is based in genetic algorithms and generalized thermosta-
tistics. This code~generalized genetic algorithm! seems to be at least as fast as generalized simulated anneal-
ing, and, moreover, it supplies information about the visiting rates for each one of the minimum-energy states.
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It is well known that many problems lead to the optim
zation of an appropriate cost/energy functionE(x) defined in
a N-dimensional continuous space. When this cost funct
has a single minimum any conventional method~gradient
descent, simplex, and variational methods! easily solves the
problem, i.e., obtains the minimum state. However, if t
cost function has many minima we must use more elabor
methods. As a matter of fact, many problems in phys
chemistry, economy, biology, etc., are multiple extrem
problems, like protein folding@1,2#, peptide conformations
@3#, drug assays@4#, and atomic clusters@5,6#. The usefulness
of some methods such as simulated annealing~SA! @7# and
genetic algorithm~GA! @8,9# to attack these problems ha
been verified in recent years. Any new proposal on th
subjects should employ methods that are able to analyze
N-dimensional space where a cost function is defined.

Besides, it would be very useful if these methods prov
the visiting frequency of each minimum. Visiting frequen
gives the number of times that the procedure spans a ra
around a given energy value. The visiting frequency is
lated to the topography of the energy hypersurface since
roughness interferes in the accessibility of the differ
minima. This information is important because complex s
tems very often assume not only its optimum value, but so
distribution among the different minima.

In developing the code, three aspects of its design hav
be taken into account for an efficient calculational syste
First, the cost functionE(x) is defined in aN-dimensional
continuous space, wherexPRN; second, we have attempte
not to trap the system in a local minimum, and third, w
desired a method that gives us an easy analysis of the vis
frequency of each minimum.

Based on generalized thermostatistics@10,11#, Tsallis and
Stariolo @12# proposed the generalized simulated annea
~GSA!, which has been used in a variety of problems, su
as macromolecule optimization using classical meth
@13,14#, or semiempirical methods@15#, geophysical prob-
lems @16#, traveling salesman problem@17#, and numerical
data fitting@18#. GSA has been proved to be the most effe
tive simulated annealing method.

In this paper we propose a generalization of the gen
algorithm, which will be referred as generalized genetic
gorithm ~GGA!, based on the generalized thermostatic a
some ideas present in the GSA_ND code@13,19#. This code
571063-651X/98/57~3!/2535~4!/$15.00
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~GGA! has some advantages over GSA because it allows
visiting frequency analysis to be faster than GSA.

Genetic algorithms~GA’s!, initially developed by Hol-
land @8,9,20# are search procedures based on the mecha
of natural selection and natural genetics. Their main feat
is robustness, i.e., a good efficiency for different and co
plex problems. Two main differences between GA’s a
most search procedures are: GA’s work with a coding of
parameter set; GA’s use a population of points. These
tures are unique to GA’s and allow them to employ the id
of adaptation and crossover that are so important for biolo
cal systems.

The GGA structure is very simple, as follows. We choo
M copies stochastically forming a first generation, then
perturb every copy’s coordinate,xj

i (t), using a visiting dis-
tribution function, gqV„Dxj

i (t)…, where i indicates thei th
copy, j indicates the coordinate, andt is the discrete time
step. This is our mutation step. Note that our mutation s
does not operate on the strings as the usual GA’s do, bu
the parameter space. The GGA mutation procedure uses
same visiting distribution function as GSA@12,13,15,16# and
GSA_ND @19#,

gqV„Dxj
i ~ t !…5S qV21

p D 1/2GS 12~1/2!~qV21!

qV21 D
GS 1

qV21
2

1

2D
3

@TqV~ t !#~1/32qV!

H 11~qV21!
„Dxj

i ~ t !…2

@TqV~ t !#2
2

32qV
J ~1/qV21!21/2

,

~1!

whereTqV is the visiting temperature~similar to the usual
temperature of SA! and qV is the visiting parameter. This
visiting distribution function, Eq.~1!, has been obtained
through the comparison of two classical models@12#. When
qV51 one obtains a Gaussian distribution@21# and when
qV52 one obtains a Cauchy-Lorentz distribution@22#.

The new copy coordinate is given by

xj
i ~ t11!5xj

i ~ t !1Dxj
i ~ t !, ~2!
R2535 © 1998 The American Physical Society
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where the inverse function of the visiting distribution

Dxj
i ~ t !5gqV

21 ~3!

has been solved as a power series expansion ofgqV

21, with a

cutoff at the 17th order, see discussion in@13#.
In conventional GA’s the acceptance of this new co

value in the mutation step is given by the well-known M
tropolis algorithm@23#. Here we use the same acceptan
criterium proposed in GSA@12#. This acceptance probabilit
is

PqA5$1,@12~12qA!@E„xi~ t !…

2E„xi~ t11!…#/TqA~ t !#~1/12qA!%, ~4!

whereTqA is the acceptance temperature andqA is the ac-
ceptance parameter. IfqA→1 we recover the conventiona
~Boltzmann-Gibbs statistics! Metropolis criterium. This pro-
cedure, Eq.~4!, is an acceptance process. We use the s
cooling procedure„TqV

(t)… used in@12# and assumeTqV
(t)

5TqA
(t), for simplicity.

After this process we obtainM copies that are used in th
steps of reproduction and crossover, as for usual GA’s. In
step of crossover we arrange the parameter set into string
bits and the new copy’s values in the crossover step is g
by Eq. ~4!.

We now summarize the GGA algorithm.~i! M copies
coordinate set$xj

i (1)% are randomly chosen. The values
qA and qV are fixed and a temperatureTqV

(1) is selected.

The energies $E„xi(1)…% are calculated.~ii ! Calculate
xj

i (t11) from xj
i (t) using Eq.~2!. ~iii ! Employ an accepting

process, i.e., calculateE„xi(t11)…, and if E„xi(t11)…
,E„xi(t)…, replaces xi(t) by xi(t11); if
E„xi(t11)…>E„xi(t)…, run a random numberRandP@0,1#.
If Rand.PqV

given by Eq.~4! retain xi(t); otherwise, re-

placexi(t) by xi(t11). ~iv! Repeat~ii ! and ~iii ! in order to
obtain a newM copies set$xi(t11)%. ~v! Calculate the new
temperatureTqV

(t11). ~vi! Reproduction step: Calculate th
probability of reproduction Eq.~4! for each copy and selec
pairs of copiesk and l . ~vii ! Crossover process: Random
mix the strings of bits fromk and l to produce two new
copies,k8 and l 8. These new copiesk8 and l 8 will be ac-
cepted through a process like~iii !. ~viii ! Repeat the steps o
reproduction and crossover untilM21 copies are obtained
The M th copy is the one with minimum cost function valu
~ix! Go back to item~ii ! or stop when a predetermined num
ber of generations are run.

Now we calculate the minimum states for a simple e
ample with four variables. We have chosen the same fu
tion used by Tsallis and Stariolo@12# in order to compare
GSA and GGA. We will restrict our illustration to the cas
qA51.5 and investigate the following cost function:

E~x!5 (
k51

4

~xk
228!215(

k51

4

xk1E0 , ~5!

whereE0.57.3276. This simple polynomial can be analy
cally minimized and we obtain 16 minima, as shown
Table I.
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In all cases, we run the procedure for 100 generatio
seven initial temperature values~1,5,10,50,100,500,1000!.
We want to regard that the random initial coordinat
$xj

i (1)% used in this simulation are positive and greater th
3.0 arb. units, therefore far from the global minimum. W
execute this procedure for a variety ofM values and the
results are presented in Figs. 1, 2, and 3, which show hi
grams of visiting frequencyas a function ofenergy. Of
course, if M51, there is no crossover and no ideas fro
genetic algorithm are involved.

Figure 1~a! shows results forM51, the GSA procedure
Figure 1~b! shows results forM5500 using a Gaussian vis
iting distribution (qV51) and, only here, Metropolis algo
rithm (qA51) as acceptance probability~traditional genetic
algorithm!, i.e., we recover the Boltzmann-Gibbs statistic

TABLE I. Exact minimal conformations of the cost function.

x1 x2 x3 x4 E Degeneracy

2.75 2.75 2.75 2.75 113.0932 1
22.90 2.75 2.75 2.75 84.8199 4
22.90 22.90 2.75 2.75 56.5466 6
22.90 22.90 22.90 2.75 28.2733 4
22.90 22.90 22.90 22.90 0 1

FIG. 1. ~a! Histogram of visiting frequency as a function o
energy for GSA procedure, i.e.,M51, qA51.5, andqVÞ1. ~b!
Histogram of visiting frequency as a function of energy for the G
procedure, i.e.,M5500, qA51, andqV51. We observed that for
M>100 this histogram does not change substantially. Each bar
responds to a window of 0.75 arb. units of potentialE.
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In both cases, we ran the procedure for 19 different ini
conditions to compare with the cases whenqVÞ1. The fig-
ures show the average from these simulations. Compa
these figures we note the greater capacity of GSA over p
GA to achieve the global minimum. However, the GSA pr
cedure does not give us too much information about
other minima. In GGA procedure we scan theqV interval
@1.1,2.9# with 0.1 as stepsize and take advantage of the
sults. In Fig. 2 we show the results of GGA with the min
mum number of copies, i.e.,M52. Even for such a smal
number of copies we observe that information about ot
minima arise. UsingM5500 we note in Fig. 3 that informa
tion about all minima are obtained for the present exam
We used an interval for initial temperature and theqV values
~if qVÞ1! because optima values for these variables have
yet been established. On the other hand, even on these
ditions we will be able to show some interesting features
GGA. Of course, we do not claim that GGA will give a
information about multiple minima for every system. Indee
for some system ergodic properties have to be taken
account. On the other hand, it seems to be useful if
wants to explore the energy hypersurface.

The GGA code has been based in the generalized the
statistics and genetic algorithms ideas. It uses what we c
sider the best feature of GSA, i.e., its great capacity to v

FIG. 2. Histogram of visiting frequency as a function of ener
for the GGA procedure, i.e.,M52, qA51.5, andqVÞ1. Each bar
corresponds to a window of 0.75 arb. units of potentialE.
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the cost function hypersurface and the inner ability of ad
tation from GA. We mention that neither using Boltzman
Gibbs statistics nor using GSA we obtained informati
about all minima in this case. On the other hand, GGA see
to supply relevant information about the whole cost functi
hypersurface. We conclude, in this preliminary work, th
GGA may be a useful algorithm to analyze thermodynami
problems where the relative weight of different minima a
important. A possible application of this procedure is t
investigation of populational analysis in simple biomolecu
systems. It would be interesting to compare GGA with me
ods of populational analysis proposed from classical mole
lar dynamics@24#. This work is relevant because in biomo
lecular systems there are situations where the ac
conformation depends on various factors and differ
minima may be occupied.

One of us wishes to thank C. Tsallis for providing Re
@12# and K. C. Mundim and I. Pepe for suggestions and v
useful discussions~M. A. Moret!. The partial financial sup-
port from CNPq, CAPES, FAPERJ, and FUJB is acknow
edged.

FIG. 3. Histogram of visiting frequency as a function of ener
for GGA procedure, i.e.,M5500, qA51.5, andqVÞ1. We ob-
served that forM>300 the histogram does not change substantia
and the visiting frequency becomes nearly symmetric around
more degenerated minimum. It seems to be related with deg
eracy. Each bar corresponds to a window of 0.75 arb. units
potentialE.
,
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